An Energy- and Helicity-Conserving Finite Element Scheme for the Navier-Stokes Equations

نویسنده

  • Leo G. Rebholz
چکیده

We present a new finite element scheme for solving the Navier-Stokes equations that exactly conserves both energy ( ∫ Ω u) and helicity ( ∫ Ω u · (∇× u)) in the absence of viscosity and external force. We prove [email protected], http://www.math.pitt.edu/∼ler6 Partially supported by NSF Grant DMS 0508260 and 0207627 1 stability, exact conservation, and convergence for the scheme. Energy and helicity are exactly conserved by using a combination of the usual (convective) form with the rotational form of the nonlinearity, and solving for both velocity and a projected vorticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Error Analysis for the 3D Navier-Stokes Equations in Velocity-Vorticity-Helicity Form

We present a rigorous numerical analysis and computational tests for the Galerkin finite element discretization of the velocity-vorticity-helicity formulation of the equilibrium Navier-Stokes equations (NSE). This formulation was recently derived by the authors, is the first NSE formulation that directly solves for helicity, the first velocityvorticity formulation to naturally enforce incompres...

متن کامل

An iterative solver for the Navier-Stokes equations in Velocity-Vorticity-Helicity form

We study a variant of augmented Lagrangian (AL)-based block triangular preconditioners to accelerate the convergence of GMRES when solving linear algebraic systems arising from finite element discretizations of the 3D Navier-Stokes equations in VelocityVorticity-Helicity form. This recently proposed formulation couples a velocity-pressure system with a vorticity-helicity system, providing a num...

متن کامل

Energy stable and momentum conserving interface stabilised finite element method for the incompressible Navier-Stokes equations

Abstract. An interface stabilised finite element method for the incompressible Navier-Stokes equations is presented. The method inherits the attractive stabilising mechanism of upwinded discontinuous Galerkin methods when momentum advection becomes significant, equal-order interpolations can be used for the velocity and pressure fields, and mass can be conserved locally. In contrast with discon...

متن کامل

Energy Stable and Momentum Conserving Hybrid Finite Element Method for the Incompressible Navier-Stokes Equations

Abstract. A hybrid method for the incompressible Navier–Stokes equations is presented. The method inherits the attractive stabilizing mechanism of upwinded discontinuous Galerkin methods when momentum advection becomes significant, equal-order interpolations can be used for the velocity and pressure fields, and mass can be conserved locally. Using continuous Lagrange multiplier spaces to enforc...

متن کامل

Stable Computing with an Enhanced Physics Based Scheme for the 3d Navier-stokes Equations

This paper extends the methodology of the enhanced-physics based scheme for the 3D Navier-Stokes equations (NSE) proposed in [23] (defined in Section 2) from its original derivation for space-periodic problems to a more general class of problems. This scheme is referred to as enhanced-physics because it is the only scheme that conserves both discrete energy and discrete helicity for the full 3D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2007